May 29, 2025
Abstract:Built environment auditing refers to the systematic documentation and assessment of urban and rural spaces' physical, social, and environmental characteristics, such as walkability, road conditions, and traffic lights. It is used to collect data for the evaluation of how built environments impact human behavior, health, mobility, and overall urban functionality. Traditionally, built environment audits were conducted using field surveys and manual observations, which were time-consuming and costly. The emerging street view imagery, e.g., Google Street View, has become a widely used data source for conducting built environment audits remotely. Deep learning and computer vision techniques can extract and classify objects from street images to enhance auditing productivity. Before meaningful analysis, the detected objects need to be geospatially mapped for accurate documentation. However, the mapping methods and tools based on street images are underexplored, and there are no universal frameworks or solutions yet, imposing difficulties in auditing the street objects. In this study, we introduced an open source street view mapping framework, providing three pipelines to map and measure: 1) width measurement for ground objects, such as roads; 2) 3D localization for objects with a known dimension (e.g., doors and stop signs); and 3) diameter measurements (e.g., street trees). These pipelines can help researchers, urban planners, and other professionals automatically measure and map target objects, promoting built environment auditing productivity and accuracy. Three case studies, including road width measurement, stop sign localization, and street tree diameter measurement, are provided in this paper to showcase pipeline usage.
Via
